Characteristic polynomials of random truncations: Moments, duality and asymptotics

نویسندگان

چکیده

We study moments of characteristic polynomials truncated Haar distributed matrices from the three classical compact groups [Formula: see text], text] and text]. For finite matrix size we calculate in terms hypergeometric functions argument give explicit integral representations highlighting duality between moment as well orthogonal symplectic cases. Asymptotic expansions strong weak non-unitarity regimes are obtained. Using connection to functions, establish limit theorems for log-modulus polynomial evaluated on unit circle.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic moments of characteristic polynomials of random matrices

In a recent article we have discussed the connections between averages of powers of Riemann’s ζ-function on the critical line, and averages of characteristic polynomials of random matrices. The result for random matrices was shown to be universal, i.e. independent of the specific probability distribution, and the results were derived for arbitrary moments. This allows one to extend the previous...

متن کامل

Joint Moments of Derivatives of Characteristic Polynomials

We investigate the joint moments of the 2k-th power of the characteristic polynomial of random unitary matrices with the 2h-th power of the derivative of this same polynomial. We prove that for a fixed h, the moments are given by rational functions of k, up to a well-known factor that already arises when h = 0. We fully describe the denominator in those rational functions (this had already been...

متن کامل

Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations

We calculate the negative integer moments of the (regularized) characteristic polynomials of N × N random matrices taken from the Gaussian Orthogonal Ensemble (GOE) in the limit as N → ∞. The results agree nontrivially with a recent conjecture of Berry & Keating motivated by techniques developed in the theory of singularity-dominated strong fluctuations. This is the first example where nontrivi...

متن کامل

On absolute moments of characteristic polynomials of a certain class of complex random matrices

Integer moments of the spectral determinant |det(zI−W )|2 of complex random matrices W are obtained in terms of the characteristic polynomial of the Hermitian matrix WW ∗ for the class of matrices W = AU where A is a given matrix and U is random unitary. This work is motivated by studies of complex eigenvalues of random matrices and potential applications of the obtained results in this context...

متن کامل

Characteristic Polynomials of Complex Random Matrix Models

We calculate the expectation value of an arbitrary product of characteristic polynomials of complex random matrices and their hermitian conjugates. Using the technique of orthogonal polynomials in the complex plane our result can be written in terms of a determinant containing these polynomials and their kernel. It generalizes the known expression for hermitian matrices and it also provides a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random matrices : theory and applications

سال: 2022

ISSN: ['2010-3263', '2010-3271']

DOI: https://doi.org/10.1142/s2010326322500496